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COMMENT 

Differential formulations of the renormalisation group in 
the large-n limit 

D D Vvedensky 
The Blackett Laboratory, Imperial College, London, SW7 2BZ, UK 

Received 6 October 1983 

Abstract. We show that the large-n form of differential renormalisation group (RG) 
equations recently derived by Busiello et al from finite-difference recursion relations, can 
be obtained in a few simple steps by working from the start with the general form of the 
differential RG. 

Busiello et a1 (1981, 1983) have recently derived differential formulations of the 
Wilson renormalisation group (RG) (Wilson and Kogut 1974) for the large-n limit of 
the classical n-vector model (Ma 1973). Busiello et a1 (1981, 1983) show that many 
of the standard fixed-point results of the original finite recursive formulations (Ma 
1973, SzCpfalusy and TCl 1979, 1980a, b) may be obtained in a more natural way 
from the differential renormalisation group ( DRG) by applying standard techniques 
from the theory of quasi-linear partial differential equations. Other advantages of the 
DRG approach over the finite recursive form are well documented (Nicoll et a1 1975, 
1976, Nicoll and Chang 1978). 

Busiello et a1 (1981, 1983) obtained the large-n form of the DRG simply by taking 
the differential limit of the recursion relations of Ma (1973) and SzCpfalusy and Ti l  
(1979, 1980a, b). In this comment we show that the large-n DRG equations can be 
obtained in a straightforward and self-contained manner by working from the start 
with a differential formulation of the RG (Wegner and Houghton 1973, Wilson and 
Kogut 1974, Nicoll and Chang 1978, Chang et a1 1978 and Vvedensky et a1 1983). 
Our approach will be seen to have the following advantages over that of Busiello et 
a1 (1981, 1983). 

(i) We bypass completely the determination of recursion relations. The only step 
in our derivation which is specific to the large-n limit of the RG is the assignment of 
orders of magnitude to various quantities as n + CO. 

(ii) Since we begin with an exact and closed-form formulation of the RG, we obtain 
limiting and approximate DRG equations as natural consequences of the exact equations 
(Nicoll et a1 1976). 

(iii) The basic functional form of the exact DRG generator fully exploits the formal 
similarity of all RG procedures for which the coarse-gaining is performed only in 
momentum space. Thus, any specification of the order parameter beyond the basic 
momentum dependence (vector or tensor components, time dependence, coupling to 
other fields) enters the coarse-gaining term of the DRG only as a trace over the 
associated field variable. 
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We begin by considering an isotropic d-dimensional system (d  > 2 )  characterised 
by an n-component order parameter whose Fourier components we denote by CLi(  k ) ,  
i = 1 , .  . . , n. Introducing the notation 

we suppose that the Hamiltonian ZG + % is in the reduced form appropriate to the 
large-n limit (Ma 1973, Nicoll et a1 1976): 

where the u Z p  are momentum independent. In our usual notation (Nicoll et a1 1976, 
Vvedensky et a1 1983), the DRG generator for %' is 

where in the case of momentum-independent % we have aRG/al= 0 and accordingly 
we have set 17 = O  (Nicoll et a1 1976). 

According to the central limit theorem, as n -f 00 we have that x (  k ,  - k )  and x are 
O ( n )  and we suppose that u2p = O ( ~ I - ~ )  (Ma 1973), so that % = O ( n ) .  On the other 
hand, the quantity t =  a%'plax is O( 1) and has the same parameter space as Z. We 
may obtain the DRG generator for t by first differentiating (3) with respect to x ,  

I-' - = 2 t + ( 2 - d ) x - + -  at  [ - d n d T r { [ ~ l , ( l + f ) + ~ x l , ( 4 .  at - 4 )  
a1 ax 2 ( 2 T )  

and performing the variable change 

(4) 

where S d  is the surface area of a unit d-sphere. Since the n-dependence in (4) is now 
explicit, we may take the limit n-fco 

at 

which is the DRG equation derived by Busiello et a1 (1981). 
For the large-n limit of critical dynamics, we consider a system again characterised 

by an n-component order parameter CLi(xt), i = 1 , .  . . , n whose dynamics are governed 
by the generalised Langevin equations 
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where the fl are deterministic forces given in terms of the Hamiltonian by 

f,[$(x, E), x, t l =  -T(X, t )a~/s$I (X,  t )  (8) 

and the v1 are stochastic forces which are assumed to have zero mean and to be 
uncorrelated in the sense that 

(T,(x, t)T,(X', r ' ) )=2r(x,  t )a ,a(x-x ' )a( t - t ' )  (9) 

and r is a transport coefficient to be specified below. We Fourier transform in space 
and time and introduce the Fourier components of the order parameter CL, and the 
field 4l conjugate to the noises through the notation $; ( k w )  = +,( kw) and $; ( k w )  = 
41( kw). Introducing the variables, 

X&(kw; -k, -w)=$L(kw)$b(-k,  -CO),  

we suppose that the action AG + A is in the reduced form appropriate to the large-n 
limit (SzCpfalusy and TCl 1979, 1980a, b): 

* P  

p = 1  q = 1  
A =  c c u2p,2qX:2xK4 

with 

r11=01 rI2  =i(k2+iw/Tk),  r21 =i(k2- iw/rk) ,  r 2 2 =  - 2 / r k  (12) 

and where the u2p,2q are momentum independent and we take rk = k2 (resp., 1) if the 
order parameter is conserved (resp., not conserved). 

The DRG generator for A is, again in our usual notation (Chang et a1 1978, 
Vvedensky er a1 1983), 

_-  aA-  ( d +  z)A + (2- d ) ~ ~ ~ ( a A / d x , ~ )  + (2- d -  z)x12(aAlax12) 
a1 

I a2A + c  x:.p. ( q w ;  -q, - w )  
,',' ax,,. ax,,. 

where in the case of momentum and frequency-independent A we have dAG/dl = 0 
and accordingly we set 7) = 0 and z = 4 (resp., 2) if the order parameter is conserved 
(resp., not conserved). 

Sincein thelarge-n limit x,,(kw; -k,-w) =O(n) ,xap  =O(n) ,and  u2p,2q =O(n'-P) 
(Sz6pfalusy and TC1 1979, 1980a), then A = O( n)  as n + m. Alternatively, the quan- 
tities t ,  = aA/ax,, = dA/dx2, and t2 = aA/ax,, are each O( 1) and together span the 
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parameter space of A. We may obtain coupled DRG equations for the ti by following 
steps analogous to (4)-(6). Differentiating (13) accordingly, we obtain for i = 1 , 2  

with A I  = 2, A 2  = 2 f z. Then, defining 

D = det rap +- = 2t2- (1 + t 1 ) 2  - o2 ( a::,) 

we expand (14) in analogy with (4) 

Performing the w and SZ 'integrations, making the variable changes 

and taking the limit n +a, we obtain 

where 

which to within an additive constant of x are the equations obtained by Busiello et a1 
(1983). This additive constant represents the effect of causality in the path integral 
representation of the equations (7)-(9) (Bausch et a1 1976) and may be eliminated 
by a simple variable transformation. 

The author would like to thank Dr T S Chang for useful conversations. This work is 
based on research carried out while the author was a NATO Postdoctoral Fellow at 
University College, London. Support at Imperial College by the British Petroleum 
Venture Research Unit is also gratefully acknowledged. 
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